
 

Studies in Intelligence Vol. 47 No. 1 (2003) 

Integrating Methodologists
into Teams of Substantive 
Experts 

 

Reducing Analytic Error 

Rob Johnston 

Intelligence analysis, like other complex tasks, demands considerable 
expertise.  It requires individuals who can recognize patterns in large data 
sets, solve complex problems, and make predictions about future behavior 
or events.  To perform these tasks successfully, analysts must dedicate a 
considerable number of years to researching specific topics, processes, 
and geographic regions. 

Paradoxically, it is the specificity of expertise that makes expert forecasts 
unreliable.  While experts outperform novices and machines in pattern 
recognition and problem solving, expert predictions of future behavior or 
events are seldom as accurate as simple actuarial tables.  In part, this is 
due to cognitive biases and processing-time constraints.  In part, it is due 
to the nature of expertise itself and the process by which one becomes an 

expert.  

 

1

Becoming an Expert 



Expertise is commitment coupled with creativity.  Specifically, it is the 
commitment of time, energy, and resources to a relatively narrow field of 
study and the creative energy necessary to generate new knowledge in 
that field.  It takes a considerable amount of time and regular exposure t
a large number of cases to become an expert. 

o 

An individual enters a field of study as a novice.  The novice needs to learn 
the guiding principles and rules—the heuristics and constraints—of a given 
task in order to perform that task.  Concurrently, the novice needs to be 
exposed to specific cases, or instances, that test the boundaries of such 
heuristics.  Generally, a novice will find a mentor to guide her through the 
process of acquiring new knowledge.  A fairly simple example would be 
someone learning to play chess.  The novice chess player seeks a mentor 
to teach her the object of the game, the number of spaces, the names of 
the pieces, the function of each piece, how each piece is moved, and the 
necessary conditions for winning or losing the game. 

In time, and with much practice, the novice begins to recognize patterns of 
behavior within cases and, thus, becomes a journeyman.  With more 
practice and exposure to increasingly complex cases, the journeyman 
finds patterns not only within cases but also between cases.  More 
importantly, the journeyman learns that these patterns often repeat 
themselves over time.  The journeyman still maintains regular contact with 
a mentor to solve specific problems and learn more complex strategies. 
Returning to the example of the chess player, the individual begins to learn 
patterns of opening moves, offensive and defensive game-playing 
strategies, and patterns of victory and defeat. 

When a journeyman starts to make and test hypotheses about future 
behavior based on past experiences, she begins the next transition.  Once 
she creatively generates knowledge, rather than simply matching 
superficial patterns, she becomes an expert.  At this point, she is 
confident in her knowledge and no longer needs a mentor as a guide—she 
becomes responsible for her own knowledge.  In the chess example, once 
a journeyman begins competing against experts, makes predictions based 
on patterns, and tests those predictions against actual behavior, she is 
generating new knowledge and a deeper understanding of the game.  She 
is creating her own cases rather than relying on the cases of others. 

The chess example is a rather short description of an apprenticeship 
model.  Apprenticeship may seem like a restrictive 18th century mode of 
education, but it is still a standard method of training for many complex 



 

tasks.  Academic doctoral programs are based on an apprenticeship 
model, as are fields like law, music, engineering, and medicine.  Graduate 
students enter fields of study, find mentors, and begin the long process of 
becoming independent experts and generating new knowledge in their 
respective domains. 

To some, playing chess may appear rather trivial when compared, for 
example, with making medical diagnoses, but both are highly complex 
tasks.  Chess has a well-defined set of heuristics, whereas medical 
diagnoses seem more open ended and variable.  In both instances, 
however, there are tens, if not hundreds, of thousands of potential 
patterns.  A research study discovered that chess masters had spent 
between 10,000 and 20,000 hours, or more than ten years, studying and 
playing chess.  On average, a chess master stores, 50,000 different chess 

patterns in long-term memory.2 

Similarly, a diagnostic radiologist spends eight years in full time medical 
training—four years of medical school and four years of residency—before
she is qualified to take a national board exam and begin independent 

practice.    According to a 1988 study, the average diagnostic radiology 
resident sees forty cases per day, or around 12,000 cases per year.   At 
the end of a residency, a diagnostic radiologist has stored, on average, 
48,000 cases in long-term memory. 
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Psychologists and cognitive scientists agree that the time it takes to 
become an expert depends on the complexity of the task and the number 
of cases, or patterns, to which an individual is exposed.  The more complex 
the task, the longer it takes to build expertise, or, more accurately, the 
longer it takes to experience and store a large number of cases or 
patterns. 

The Power of Expertise 

Experts are individuals with specialized knowledge suited to perform the 
specific tasks for which they are trained, but that expertise does not 
necessarily transfer to other domains.   A master chess player cannot 
apply chess expertise in a game of poker—although both chess and poker 
are games, a chess master who has never played poker is a novice poker 
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player.  Similarly, a biochemist is not qualified to perform neurosurgery, 
even though both biochemists and neurosurgeons study human 
physiology.  In other words, the more complex a task is, the more 
specialized and exclusive is the knowledge required to perform that task. 

An expert perceives meaningful patterns in her domain better than non-
experts.  Where a novice perceives random or disconnected data points, 
an expert connects regular patterns within and between cases.  This 
ability to identify patterns is not an innate perceptual skill; rather it 
reflects the organization of knowledge after exposure to and experience 
with thousands of cases.  6

Experts have a deeper understanding of their domains than novices do, 
and utilize higher-order principles to solve problems.    A novice, for 
example, might group objects together by color or size, whereas an expert 
would group the same objects according to their function or utility. 
Experts comprehend the meaning of data and weigh variables with 
different criteria within their domains better than novices.  Experts 
recognize variables that have the largest influence on a particular problem
and focus their attention on those variables. 
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Experts have better domain-specific short-term and long-term memory 
than novices do.    Moreover, experts perform tasks in their domains faster 
than novices and commit fewer errors while problem solving.    
Interestingly, experts go about solving problems differently than novices. 
Experts spend more time thinking about a problem to fully understand it 
at the beginning of a task than do novices, who immediately seek to find a 
solution.    Experts use their knowledge of previous cases as context for 
creating mental models to solve given problems.  11

10

9
8

Better at self-monitoring than novices, experts are more aware of 
instances where they have committed errors or failed to understand a 
problem.  Experts check their solutions more often than novices and 
recognize when they are missing information necessary for solving a 
problem.  Experts are aware of the limits of their domain knowledge and
apply their domain’s heuristics to solve problems that fall outside of their 
experience base. 
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The Paradox of Expertise 
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The strengths of expertise can also be weaknesses.  Although one would 
expect experts to be good forecasters, they are not particularly good at 
making predictions about the future.  Since the 1930s, researchers have 
been testing the ability of experts to make forecasts.  The performance 
of experts has been tested against actuarial tables to determine if they are 
better at making predictions than simple statistical models.  Seventy years 
later, with more than two hundred experiments in different domains, it is 
clear that the answer is no.    If supplied with an equal amount of data 
about a particular case, an actuarial table is as good, or better, than an 
expert at making calls about the future.  Even if an expert is given more 
specific case information than is available to the statistical model, the 
expert does not tend to outperform the actuarial table.

16
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There are few exceptions to these research findings, but the exceptions 
are informative.  When experts are given the results of the actuarial 
predictions, for example, they tend to score as well as the statistical model 
if they use the statistical information in making their own predictions.  In 
addition, if an expert has privileged information that is not reflected in the 
statistical table, she will actually perform better than the table.  A classic 
example is the broken leg argument:  Judge X has gone to the theater 
every Friday night for the past ten years.  Based on an actuarial table, one 
would predict, with some certainty, that the judge would go to the theater 
this Friday night.  An expert knows, however, that the judge broke her leg 
Thursday afternoon and is currently in the hospital until Saturday. 
Knowing this key variable allows the expert to predict that the judge will 
not attend the theater this Friday night. 

18

Although this argument makes sense, it is misleading.  Forecasting is not 
simply a linear logical argument but rather a complex, interdisciplinary, 
dynamic, and multivariate task.  Cases are rare where one key variable is 
known and weighed appropriately to determine an outcome.  Generally, no 
single static variable predicts behavior; rather, many dynamic variables 
interact, weight and value change, and other variables are introduced or 
omitted to determine outcome. 

Theorists and researchers differ when trying to explain why experts are 
less accurate forecasters than statistical models.  Some have argued that 
experts, like all humans, are inconsistent when using mental models to 
make predictions.  That is, the model an expert uses for predicting X in 
one month is different from the model used for predicting X in a following 
month, although precisely the same case and same data set are used in 
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both instances.  19

A number of researchers point to human biases to explain unreliable 
expert predictions.  During the last 30 years, researchers have categorized, 
experimented, and theorized about the cognitive aspects of forecasting.   
Despite such efforts, the literature shows little consensus regarding the 
causes or manifestations of human bias.  Nonetheless, there is general 
agreement that two types of bias exist: 

20

Pattern bias—looking for evidence that confirms rather than rejects a 
hypothesis and inadvertently filling in missing data with data from previous 
experiences. 

Heuristic bias—using inappropriate guidelines or rules to make predictions. 

The very method by which one becomes an expert explains why experts 
are much better at describing, explaining, performing tasks, and problem-
solving within their domains than are novices, but, with a few exceptions, 
are worse at forecasting than actuarial tables based on historical, 
statistical models. 

A given domain has specific heuristics for performing tasks and solving 
problems.  These rules are a large part of what makes up expertise.  In 
addition, experts need to acquire and store tens of thousands of cases 
within their domains in order to recognize patterns, generate and test 
hypotheses, and contribute to the collective knowledge within their fields. 
In other words, becoming an expert requires a significant number of years 
of viewing the world through the lens of one specific domain.  It is the 
specificity that gives the expert the power to recognize patterns, perform 
tasks, and solve problems. 

Paradoxically, it is this same specificity that is restrictive, narrowly focusing 
the expert’s attention on one domain to the exclusion of others.  It should 
come as little surprise, then, that an expert would have difficulty 
identifying and weighing variables in an interdisciplinary task such as 
forecasting an adversary’s intentions. 

The Burden on Intelligence Analysts 

https://forecasting.20
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Intelligence is an amalgam of a number of highly specialized domains. 
Within each of these domains, a number of experts are tasked with 
assembling, analyzing, assigning meaning, and reporting on data, the goals 
being to describe, solve a problem, or make a forecast. 

When an expert encounters a case outside her expertise, her options are 
to repeat the steps she initially used to become an expert in the field.  She
can: 

 

Try to make the new data fit with a pattern that she has previously stored; 

Recognize that the case falls outside her expertise and turn to her 
domain’s heuristics to try to give meaning to the data; 

Acknowledge that the case still does not fit with her expertise and reject 
the data set as being an anomaly; or 

Consult with other experts. 

A datum, in and of itself, is not domain specific.  Imagine economic data 
that reveal that a country is investing in technological infrastructure, 
chemical supplies, and research and development.  An economist might 
decide that the data fit an existing spending pattern and integrate these 
facts with prior knowledge about a country’s economy.  The same 
economist might decide that this is a new pattern that needs to be 
remembered (or stored in long-term memory) for some future use.  The 
economist might decide that the data are outliers of no consequence and 
should be ignored.  Or, the economist might decide that the data would be 
meaningful to a chemist or biologist and therefore seek to collaborate with 
other specialists who might reach different conclusions regarding the data 
than would the economist. 

In this example, the economist is required to use her economic expertise 
in all but the final option of consulting with other experts.  In the decision 
to collaborate, the economist is expected to know that what appears to be 
new economic data may have value to a chemist or biologist, domains with 
which she may have no experience.  In other words, the economist is 
expected to know that an expert in some other field might find meaning in 
data that appear to be economic. 

Three confounding variables affect the economist’s decisionmaking: 

Processing time, or context.  This does not refer to the amount of time 
necessary to accomplish a task, but rather the moment in time during 



which a task occurs—“real time”—and the limitations that come from being 
close to an event.  The economist doesn’t have a priori knowledge that the 
new data set is the critical data set for some future event.  In “real time,” 
they are simply data to be manipulated.  It is only in retrospect, or long-
term memory, that the economist can fit the data into a larger pattern, 
weigh their value, and assign them meaning. 

Pattern bias.  In this particular example, the data appear to be economic 
and the expert is an economist.  The data are, after all, investment data. 
Given the background and training of an economist, it makes perfect 
sense to try to manipulate the new data within the context of economics, 
despite the fact that there may be other more important angles. 

Heuristic bias.  The economist has spent a career becoming familiar with 
and using the guiding principles of economic analysis and, at best, has 
only a vague familiarity with other domains and their heuristics.  An 
economist would not necessarily know that a chemist or biologist could 
identify what substance is being produced based on the types of 
equipment and supplies that are being purchased. 

This example does not describe a complex problem—most people would 
recognize that the data from this case might be of value to other domains. 
It is one isolated case, viewed retrospectively, which could potentially 
affect two other domains.  But what if the economist had to deal with one 
hundred data sets per day?  Now, multiply those one hundred data sets by 
the number of potential domains that would be interested in any given 
economic data set.  Finally, put all of this in the context of “real time.”  The 
economic expert is now expected to maintain expertise in economics, 
which is a full-time endeavor, while simultaneously acquiring some level of 
experience in every other domain.  Based on these expectations, the 
knowledge requirements for effective collaboration quickly exceed the 
capabilities of the individual expert. 

The expert is left dealing with the data through the lens of her own 
expertise.  She uses her domain heuristics to incorporate the data into an 
existing pattern, store the data into long-term memory as a new pattern, or 
reject the data set as an outlier.  In each of these options, the data stop 
with the economist instead of being shared with an expert in some other 
domain. The fact that these data are not shared then becomes a critical 
issue in cases of analytic error.21 

In hindsight, critics will say that the implications were obvious—that the 
crisis could have been avoided if the data had been passed to one 
specific expert or another.  In “real time,” however, an expert cannot know 
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which particular data set would have value for an expert in another 
domain. 

The Pros and Cons of Teams 

One obvious solution to the paradox of expertise is to assemble an 
interdisciplinary team.  Why not simply make all problem areas or country-
specific data available to a team of experts from a variety of domains? 
This ought, at least, to reduce the pattern and heuristic biases inherent in 
relying on only one domain. 

Ignoring potential security issues, there are practical problems with this 
approach.  First, each expert would have to sift through large data sets to 
find data specific to her expertise.  This would be inordinately time-
consuming. 

Second, during the act of scanning large data sets, the expert inevitably 
would be looking for data that fit within her area of expertise.  Imagine a 
chemist who comes across data that show that a country is investing in 
technological infrastructure, chemical supplies, and research and 
development (the same data that the economist analyzed in the previous 
example).  The chemist recognizes that these are the ingredients 
necessary for a nation to produce a specific chemical agent, which could 
have a military application or could be benign.  The chemist then meshes 
the data with an existing pattern, stores the data as a new pattern, or 
ignores the data as an anomaly. 

The chemist, however, has no frame of reference regarding spending 
trends in the country of interest.  The chemist does not know if this is an 
increase, a decrease, or a static spending pattern—answers that the 
economist could supply immediately.  There is no reason for the chemist 
to know if a country’s ability to produce this chemical agent is a new 
phenomenon.  Perhaps the country in question has been producing the 
chemical agent for years and these data are part of some normal pattern 
of behavior. 

One hope is that neither expert treats the data set as an anomaly, that 
both report it as significant.  Another hope is that each expert’s analysis of 
the data—an increase in spending and the identification of a specific 
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chemical agent—will come together at some point.  The problem is at what 
point?  Presumably, someone will get both of these reports somewhere 
along the intelligence chain.  Of course, the individual who gets these 
reports may not be able to synthesize the information.  That person is 
subject to the same three confounding variables described earlier: 
processing time, pattern bias, and heuristic bias.  Rather than solving the 
paradox of expertise, the problem has merely been shifted to someone 
else in the organization. 

In order to avoid shifting the problem from one expert to another, an actual 
collaborative team could be built.  Why not explicitly put the economist 
and the chemist together to work on analyzing data?  The utilitarian 
problems with this strategy are obvious.  Not all economic problems are 
chemical and not all chemical problems are economic.  Each expert would 
waste an inordinate amount of time.  Perhaps one case in one hundred 
would be applicable to both experts; during the rest of the day, the experts 
would drift back to their individual domains, in part because that is what 
they are best at and in part just to stay busy. 

Closer to the real world, the same example may also have social, political, 
historical, and cultural aspects.  Despite an increase in spending on a 
specific chemical agent, the country in question may not be politically, 
culturally, socially, historically, or otherwise inclined to use it in a 
threatening way.  There may be social data—unavailable to the economist 
or the chemist—indicating that the chemical agent will be used for a 
benign purpose.  In order for collaboration to work, each team would have 
to have experts from many domains working together on the same data 
set. 

Successful teams have very specific organizational and structural 
requirements.  An effective team requires discrete and clearly stated goals 
that are shared by each team member.   Teams require interdependence 
and accountability—the success of each individual depends on the 
success of the team as a whole and the individual success of every other 
team member.  23

22

Effective teams require cohesion, formal and informal communication, 
cooperation, and shared mental models, or similar knowledge structures.
While cohesion, communication, and cooperation might be facilitated by 
specific work practices, creating shared mental models, or similar 
knowledge structures, is not a trivial task.  Creating shared mental models 
may be possible with an air crew or a tank crew, where an individual’s role 
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is clearly identifiable as part of a larger team effort—like landing a plane or 
acquiring and firing on a target.  Creating shared mental models in an 
intelligence team is less likely, given the vague nature of the goals, the 
enormity of the task, and the diversity of individual expertise.  Moreover, 
the larger the number of team members, the more difficult it is to generate 
cohesion, communication, and cooperation.  Heterogeneity can also be a 
challenge:  It has a positive effect on generating diverse viewpoints within 
a team, but requires more organizational structure than does a 
homogeneous team.25 

Without specific processes, organizing principles, and operational 
structures, interdisciplinary teams will quickly revert to being just a room 
full of experts who ultimately drift back to their previous work patterns. 
That is, the experts will not be a team at all; they will be a group of experts 
individually working in some general problem space.26 

Looking to Technology 

There are potential technological alternatives to multifaceted teams.  An 
Electronic Performance Support System (EPSS), for example, is a large 
database, coupled with expert systems, intelligent agents, and decision 
aids.  Applying such a system to intelligence problems might be a useful 
goal.  At this point, however, the notion of an integrated EPSS for large 
complex data sets is more theory than practice.    Ignoring questions 
about the technological feasibility of such a system, fundamental 
epistemological flaws present imposing hurdles.  It is virtually 
inconceivable that a comprehensive computational system could by-pass 
the three confounding variables of expertise described earlier. 

27

An EPSS, or any other computational solution, is designed, programmed, 
and implemented by a human expert from one domain:  computer 
science.  Historians will not design the “historical decision aid;” 
economists will not program the “economic intelligent agent;” chemists will 
not create the “chemical agent expert system.”  Software engineers and 
computer scientists will do all of that. 

Computer scientists may consult with various experts during the design 
phase of such a system, but when it is time to sit down and write code, 
the programmer will follow the heuristics of computer science.  The 
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flexibility, adaptability, complexity, and usability of the computational 
system will be dictated by the guidelines and rules of computer science.
  In essence, one would be trading the heuristics from dozens of domains 
for the rules that govern computer science.  This would reduce the 
problem of processing time by simplifying and linking data, and it may 
potentially reduce pattern bias.  But it will not reduce heuristic bias.  If 
anything, it may exagerate it by reducing all data to a binary state. 

29
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This is not simply a Luddite reaction to technology.  Computational 
systems have had a remarkable, positive effect on processing time, 
storage, and retrieval.  They have also demonstrated utility in identifying 
patterns within narrowly defined and highly constrained domains. 
However, intelligence analysis is neither narrowly defined nor highly 
constrained.  Quite the opposite, it is multivariate and highly complex, 
which is why it requires the expertise of so many diverse fields of study. 
Intelligence analysis is not something a computational system handles 
well.  While an EPSS, or some other form of computational system, may be 
a useful tool for manipulating data, it is not a solution to the paradox of 
expertise. 

Analytic Methodologists 

Most domains have specialists who study the scientific process or 
research methods of their discipline.  These people are concerned with 
the epistemology of their domain, not just philosophically but practically. 
They want to know how experts in their discipline reach conclusions or 
make discoveries.  Rather than specializing in a specific substantive topic 
within their domain, these experts specialize in mastering the research 
and analytic methods of their domain. 

In the biological and medical fields, these methodological specialists are 
epidemiologists.  In education and public policy, these specialists are 
program evaluators.  In other fields, they are research methodologists or 
statisticians.  Despite the label, each field recognizes that it requires 
experts in methodology to maintain and pass on the domain’s heuristics 
for problem solving and making discoveries. 

The methodologist’s focus is on selecting and employing a process or 
processes to research and analyze data.  Specifically, the methodologist 
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identifies the research design, the methods for choosing samples, and the 
tools for data analyses.  This specialist becomes an in-house consultant 
for selecting the process by which one derives meaning from the data, 
recognizes patterns, and solves problems within a domain. 
Methodologists become organizing agents within their field by focusing on 
the heuristics of their domain and validating the method of discovery for 
their discipline. 

The methodologist holds a unique position within the discipline. 
Organizing agents are often called on by substantive experts to advise on 
a variety of process issues within their field because they have a different 
perspective than do the experts.  On any given day, an epidemiologist, for 
example, may be asked to consult on studies of the effects of alcoholism 
on a community or the spread of a virus, or to review a double-blind 
clinical trial of a new pharmaceutical product.  In each case, the 
epidemiologist is not being asked about the content of the study; rather 
he is being asked to comment on the research methods and data analysis 
techniques used. 

Well over 200 analytic methods, most from domains outside intelligence, 
are available to the intelligence analyst; however, few methods specific to 
the domain of intelligence analysis exist.    Intelligence analysis lacks 
specialists whose professional training is in the process of employing and 
unifying the analytic practices within the field of intelligence.  Knowing 
how to apply methods, select one method over another, weigh disparate 
variables, and synthesize the results is left to the individual intelligence 
analysts—the same analysts whose expertise is confined to specific 
substantive areas and their own domains’ heuristics. 

30

Intelligence needs methodologists to help strengthen the domain of 
analysis.  Such methodologists need to specialize in the processes that 
the intelligence domain holds to be valid.  In some fields, like epidemiology 
and program evaluation, methodologists are expected to be experts in a 
wide variety of quantitative and qualitative methods.  In other fields, the 
methodologists may be narrowly focused—a laboratory-based 
experimental methodologist, for example, or statistician.  In all cases, 
however, methodologists can only be effective if they are experts at the 
process of making meaning within their own disciplines. 

In order to overcome heuristic biases, intelligence agencies need to focus 
personnel, resources, and training on developing intelligence 
methodologists.  These methodologists will act as in-house consultants for 
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analytic teams, generate new methods specific to intelligence analysis, 
modify and improve existing methods of analysis, and increase the 
professionalization of the discipline of intelligence. 

Conclusion 

Intelligence analysis uses a wide variety of expertise to address a 
multivariate and complex world.  Each expert uses his or her own 
heuristics to address a small portion of that world.  Intelligence 
professionals have the perception that somehow all of that disparate 
analysis will come together at some point, either at the analytic team level, 
through the reporting hierarchy, or through some computational 
agregation. 

The intelligence analyst is affected by the same confounding variables 
that affect every other expert:  processing time, pattern bias, and heuristic 
bias.  This is the crux of the paradox of expertise.  Domain experts are 
needed for describing, explaining, and problem solving; yet, they are not 
especially good at forecasting because the patterns they recognize are 
limited to their specific fields of study.  They inevitably look at the world 
through the lens of their own domain’s heuristics. 

What is needed to overcome the paradox of expertise is a combined 
approach that includes formal thematic teams with structured 
organizational principles; technological systems designed with significant 
input from domain experts; and a cadre of analytic methodologists. 
Intelligence agencies continue to experiment with the right composition, 
structure, and organization of analytic teams; they budget significant 
resources for technological solutions; but comparatively little is being done 
to advance methodological science. 

Advances in methodology are primarily left to the individual domains.  But 
relying on the separate domains risks falling into the same paradoxical 
trap that currently exists.  What is needed is an intelligence-centric 
approach to methodology, an approach that will include the methods and 
procedures of many domains and the development of heuristics and 
techniques unique to intelligence.  In short, intelligence analysis needs its 
own analytic heuristics designed, developed, and tested by professional 
analytic methodologists.  This will require using methodologists from a 
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variety of other domains and professional associations at first, but, in time, 
the discipline of analytic methodology will mature into its own sub-
discipline with its own measures of validity and reliability. 
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